Random Forests for Spatially Dependent Data
Arkajyoti Saha,
Sumanta Basu and
Abhirup Datta
Journal of the American Statistical Association, 2023, vol. 118, issue 541, 665-683
Abstract:
Spatial linear mixed-models, consisting of a linear covariate effect and a Gaussian process (GP) distributed spatial random effect, are widely used for analyses of geospatial data. We consider the setting where the covariate effect is nonlinear. Random forests (RF) are popular for estimating nonlinear functions but applications of RF for spatial data have often ignored the spatial correlation. We show that this impacts the performance of RF adversely. We propose RF-GLS, a novel and well-principled extension of RF, for estimating nonlinear covariate effects in spatial mixed models where the spatial correlation is modeled using GP. RF-GLS extends RF in the same way generalized least squares (GLS) fundamentally extends ordinary least squares (OLS) to accommodate for dependence in linear models. RF becomes a special case of RF-GLS, and is substantially outperformed by RF-GLS for both estimation and prediction across extensive numerical experiments with spatially correlated data. RF-GLS can be used for functional estimation in other types of dependent data like time series. We prove consistency of RF-GLS for β-mixing dependent error processes that include the popular spatial Matérn GP. As a byproduct, we also establish, to our knowledge, the first consistency result for RF under dependence. We establish results of independent importance, including a general consistency result of GLS optimizers of data-driven function classes, and a uniform law of large number under β-mixing dependence with weaker assumptions. These new tools can be potentially useful for asymptotic analysis of other GLS-style estimators in nonparametric regression with dependent data.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1950003 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:665-683
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1950003
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().