EconPapers    
Economics at your fingertips  
 

Crop Yield Prediction Using Bayesian Spatially Varying Coefficient Models with Functional Predictors

Yeonjoo Park, Bo Li and Yehua Li

Journal of the American Statistical Association, 2023, vol. 118, issue 541, 70-83

Abstract: Reliable prediction for crop yield is crucial for economic planning, food security monitoring, and agricultural risk management. This study aims to develop a crop yield forecasting model at large spatial scales using meteorological variables closely related to crop growth. The influence of climate patterns on agricultural productivity can be spatially inhomogeneous due to local soil and environmental conditions. We propose a Bayesian spatially varying functional model (BSVFM) to predict county-level corn yield for five Midwestern states, based on annual precipitation and daily maximum and minimum temperature trajectories modeled as multivariate functional predictors. The proposed model accommodates spatial correlation and measurement errors of functional predictors, and respects the spatially heterogeneous relationship between the response and associated predictors by allowing the functional coefficients to vary over space. The model also incorporates a Bayesian variable selection device to further expand its capacity to accommodate spatial heterogeneity. The proposed method is demonstrated to outperform other highly competitive methods in corn yield prediction, owing to the flexibility of allowing spatial heterogeneity with spatially varying coefficients in our model. Our study provides further insights into understanding the impact of climate change on crop yield. Supplementary materials for this article are available online.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2123333 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:70-83

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2123333

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:541:p:70-83