EconPapers    
Economics at your fingertips  
 

Structure–Adaptive Sequential Testing for Online False Discovery Rate Control

Bowen Gang, Wenguang Sun and Weinan Wang

Journal of the American Statistical Association, 2023, vol. 118, issue 541, 732-745

Abstract: Consider the online testing of a stream of hypotheses where a real-time decision must be made before the next data point arrives. The error rate is required to be controlled at all decision points. Conventional simultaneous testing rules are no longer applicable due to the more stringent error constraints and absence of future data. Moreover, the online decision-making process may come to a halt when the total error budget, or alpha-wealth, is exhausted. This work develops a new class of structure-adaptive sequential testing (SAST) rules for online false discovery rate (FDR) control. A key element in our proposal is a new alpha-investing algorithm that precisely characterizes the gains and losses in sequential decision making. SAST captures time varying structures of the data stream, learns the optimal threshold adaptively in an ongoing manner and optimizes the alpha-wealth allocation across different time periods. We present theory and numerical results to show that SAST is asymptotically valid for online FDR control and achieves substantial power gain over existing online testing rules.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1955688 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:732-745

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2021.1955688

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:541:p:732-745