Structure–Adaptive Sequential Testing for Online False Discovery Rate Control
Bowen Gang,
Wenguang Sun and
Weinan Wang
Journal of the American Statistical Association, 2023, vol. 118, issue 541, 732-745
Abstract:
Consider the online testing of a stream of hypotheses where a real-time decision must be made before the next data point arrives. The error rate is required to be controlled at all decision points. Conventional simultaneous testing rules are no longer applicable due to the more stringent error constraints and absence of future data. Moreover, the online decision-making process may come to a halt when the total error budget, or alpha-wealth, is exhausted. This work develops a new class of structure-adaptive sequential testing (SAST) rules for online false discovery rate (FDR) control. A key element in our proposal is a new alpha-investing algorithm that precisely characterizes the gains and losses in sequential decision making. SAST captures time varying structures of the data stream, learns the optimal threshold adaptively in an ongoing manner and optimizes the alpha-wealth allocation across different time periods. We present theory and numerical results to show that SAST is asymptotically valid for online FDR control and achieves substantial power gain over existing online testing rules.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1955688 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:541:p:732-745
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1955688
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().