Bagged Filters for Partially Observed Interacting Systems
Edward L. Ionides,
Kidus Asfaw,
Joonha Park and
Aaron A. King
Journal of the American Statistical Association, 2023, vol. 118, issue 542, 1078-1089
Abstract:
Bagging (i.e., bootstrap aggregating) involves combining an ensemble of bootstrap estimators. We consider bagging for inference from noisy or incomplete measurements on a collection of interacting stochastic dynamic systems. Each system is called a unit, and each unit is associated with a spatial location. A motivating example arises in epidemiology, where each unit is a city: the majority of transmission occurs within a city, with smaller yet epidemiologically important interactions arising from disease transmission between cities. Monte Carlo filtering methods used for inference on nonlinear non-Gaussian systems can suffer from a curse of dimensionality (COD) as the number of units increases. We introduce bagged filter (BF) methodology which combines an ensemble of Monte Carlo filters, using spatiotemporally localized weights to select successful filters at each unit and time. We obtain conditions under which likelihood evaluation using a BF algorithm can beat a COD, and we demonstrate applicability even when these conditions do not hold. BF can out-perform an ensemble Kalman filter on a coupled population dynamics model describing infectious disease transmission. A block particle filter (BPF) also performs well on this task, though the bagged filter respects smoothness and conservation laws that a BPF can violate. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1974867 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:542:p:1078-1089
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1974867
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().