Assumption-Lean Analysis of Cluster Randomized Trials in Infectious Diseases for Intent-to-Treat Effects and Network Effects
Chan Park and
Hyunseung Kang
Journal of the American Statistical Association, 2023, vol. 118, issue 542, 1195-1206
Abstract:
Cluster randomized trials (CRTs) are a popular design to study the effect of interventions in infectious disease settings. However, standard analysis of CRTs primarily relies on strong parametric methods, usually mixed-effect models to account for the clustering structure, and focuses on the overall intent-to-treat (ITT) effect to evaluate effectiveness. The article presents two assumption-lean methods to analyze two types of effects in CRTs, ITT effects and network effects among well-known compliance groups. For the ITT effects, we study the overall and the heterogeneous ITT effects among the observed covariates where we do not impose parametric models or asymptotic restrictions on cluster size. For the network effects among compliance groups, we propose a new bound-based method that uses pretreatment covariates, classification algorithms, and a linear program to obtain sharp bounds. A key feature of our method is that the bounds can become narrower as the classification algorithm improves and the method may also be useful for studies of partial identification with instrumental variables. We conclude by reanalyzing a CRT studying the effect of face masks and hand sanitizers on transmission of 2008 interpandemic influenza in Hong Kong.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1983437 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:542:p:1195-1206
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1983437
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().