EconPapers    
Economics at your fingertips  
 

Identification, Semiparametric Efficiency, and Quadruply Robust Estimation in Mediation Analysis with Treatment-Induced Confounding

Fan Xia and Kwun Chuen Gary Chan

Journal of the American Statistical Association, 2023, vol. 118, issue 542, 1272-1281

Abstract: Natural mediation effects are often of interest when the goal is to understand a causal mechanism. However, most existing methods and their identification assumptions preclude treatment-induced confounders often present in practice. To address this fundamental limitation, we provide a set of assumptions that identify the natural direct effect in the presence of treatment-induced confounders. Even when some of those assumptions are violated, the estimand still has an interventional direct effect interpretation. We derive the semiparametric efficiency bound for the estimand, which unlike usual expressions, contains conditional densities that are variational dependent. We consider a reparameterization and propose a quadruply robust estimator that remains consistent under four types of possible misspecification and is also locally semiparametric efficient. We use simulation studies to demonstrate the proposed method and study an application to the 2017 Natality data to investigate the effect of prenatal care on preterm birth mediated by preeclampsia with smoking status during pregnancy being a potential treatment-induced confounder.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1990765 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:542:p:1272-1281

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2021.1990765

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:542:p:1272-1281