Independent Nonlinear Component Analysis
Florian Gunsilius and
Susanne Schennach
Journal of the American Statistical Association, 2023, vol. 118, issue 542, 1305-1318
Abstract:
The idea of summarizing the information contained in a large number of variables by a small number of “factors” or “principal components” has been broadly adopted in statistics. This article introduces a generalization of the widely used principal component analysis (PCA) to nonlinear settings, thus providing a new tool for dimension reduction and exploratory data analysis or representation. The distinguishing features of the method include (i) the ability to always deliver truly independent (instead of merely uncorrelated) factors; (ii) the use of optimal transport theory and Brenier maps to obtain a robust and efficient computational algorithm; (iii) the use of a new multivariate additive entropy decomposition to determine the most informative principal nonlinear components, and (iv) formally nesting PCA as a special case for linear Gaussian factor models. We illustrate the method’s effectiveness in an application to excess bond returns prediction from a large number of macro factors. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1990768 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Independent nonlinear component analysis (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:542:p:1305-1318
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1990768
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().