Discrepancy Between Global and Local Principal Component Analysis on Large-Panel High-Frequency Data
Xin-Bing Kong,
Jin-Guan Lin,
Cheng Liu and
Guang-Ying Liu
Journal of the American Statistical Association, 2023, vol. 118, issue 542, 1333-1344
Abstract:
In this article, we study the discrepancy between the global principal component analysis (GPCA) and local principal component analysis (LPCA) in recovering the common components of a large-panel high-frequency data. We measure the discrepancy by the total sum of squared differences between common components reconstructed from GPCA and LPCA. The asymptotic distribution of the discrepancy measure is provided when the factor space is time invariant as the dimension p and sample size n tend to infinity simultaneously. Alternatively when the factor space changes, the discrepancy measure explodes under some mild signal condition on the magnitude of time-variation of the factor space. We apply the theory to test the invariance in time of the factor space. The test performs well in controlling the Type I error and detecting time-varying factor spaces. This is checked by extensive simulation studies. A real data analysis provides strong evidences that the factor space is always time-varying within a time span longer than one week.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1996376 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:542:p:1333-1344
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1996376
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().