EconPapers    
Economics at your fingertips  
 

Accelerating Bayesian Structure Learning in Sparse Gaussian Graphical Models

Reza Mohammadi, Hélène Massam and Gérard Letac

Journal of the American Statistical Association, 2023, vol. 118, issue 542, 1345-1358

Abstract: Bayesian structure learning in Gaussian graphical models is often done by search algorithms over the graph space.The conjugate prior for the precision matrix satisfying graphical constraints is the well-known G-Wishart.With this prior, the transition probabilities in the search algorithms necessitate evaluating the ratios of the prior normalizing constants of G-Wishart.In moderate to high-dimensions, this ratio is often approximated by using sampling-based methods as computationally expensive updates in the search algorithm.Calculating this ratio so far has been a major computational bottleneck.We overcome this issue by representing a search algorithm in which the ratio of normalizing constants is carried out by an explicit closed-form approximation.Using this approximation within our search algorithm yields significant improvement in the scalability of structure learning without sacrificing structure learning accuracy.We study the conditions under which the approximation is valid.We also evaluate the efficacy of our method with simulation studies.We show that the new search algorithm with our approximation outperforms state-of-the-art methods in both computational efficiency and accuracy.The implementation of our work is available in the R package BDgraph.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1996377 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:542:p:1345-1358

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2021.1996377

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:542:p:1345-1358