Convex and Nonconvex Optimization Are Both Minimax-Optimal for Noisy Blind Deconvolution Under Random Designs
Yuxin Chen,
Jianqing Fan,
Bingyan Wang and
Yuling Yan
Journal of the American Statistical Association, 2023, vol. 118, issue 542, 858-868
Abstract:
We investigate the effectiveness of convex relaxation and nonconvex optimization in solving bilinear systems of equations under two different designs (i.e., a sort of random Fourier design and Gaussian design). Despite the wide applicability, the theoretical understanding about these two paradigms remains largely inadequate in the presence of random noise. The current article makes two contributions by demonstrating that (i) a two-stage nonconvex algorithm attains minimax-optimal accuracy within a logarithmic number of iterations, and (ii) convex relaxation also achieves minimax-optimal statistical accuracy vis-à-vis random noise. Both results significantly improve upon the state-of-the-art theoretical guarantees. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1956501 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:542:p:858-868
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1956501
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().