EconPapers    
Economics at your fingertips  
 

Collaborative Multilabel Classification

Yunzhang Zhu, Xiaotong Shen, Hui Jiang and Wing Hung Wong

Journal of the American Statistical Association, 2023, vol. 118, issue 542, 913-924

Abstract: In multilabel classification, strong label dependence is present for exploiting, particularly for word-to-word dependence defined by semantic labels. In such a situation, we develop a collaborative-learning framework to predict class labels based on label-predictor pairs and label-only data. For example, in image categorization and recognition, language expressions describe the content of an image together with a large number of words and phrases without associated images. This article proposes a new loss quantifying partial correctness for false positive and negative misclassifications due to label similarities. Given this loss, we develop the Bayes rule to capture label dependence by nonlinear classification. On this ground, we introduce a weighted random forest classifier for complete data and a stacking scheme for leveraging additional labels to enhance the performance of supervised learning based on label-predictor pairs. Importantly, we decompose multilabel classification into a sequence of independent learning tasks, based on which the computational complexity of our classifier becomes linear in the size of labels. Compared to existing classifiers without label-only data, the proposed classifier enjoys the computational benefit while enabling the detection of novel labels absent from training by exploring label dependence and leveraging label-only data for higher accuracy. Theoretically, we show that the proposed method reconstructs the Bayes performance consistently, achieving the desired learning accuracy. Numerically, we demonstrate that the proposed method compares favorably in terms of the proposed and Hamming losses against binary relevance and a regularized Ising classifier modeling conditional label dependence. Indeed, leveraging additional labels tends to improve the supervised performance, especially when the training sample is not very large, as in semisupervised learning. Finally, we demonstrate the utility of the proposed approach on the Microsoft COCO object detection challenge, PASCAL visual object classes challenge 2007, and Mediamill benchmark.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1961783 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:542:p:913-924

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2021.1961783

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:542:p:913-924