Assessing the Most Vulnerable Subgroup to Type II Diabetes Associated with Statin Usage: Evidence from Electronic Health Record Data
Xinzhou Guo,
Waverly Wei,
Molei Liu,
Tianxi Cai,
Chong Wu and
Jingshen Wang
Journal of the American Statistical Association, 2023, vol. 118, issue 543, 1488-1499
Abstract:
There have been increased concerns that the use of statins, one of the most commonly prescribed drugs for treating coronary artery disease, is potentially associated with the increased risk of new-onset Type II diabetes (T2D). Nevertheless, to date, there is no robust evidence supporting as to whether and what kind of populations are indeed vulnerable for developing T2D after taking statins. In this case study, leveraging the biobank and electronic health record data in the Partner Health System, we introduce a new data analysis pipeline and a novel statistical methodology that address existing limitations by (i) designing a rigorous causal framework that systematically examines the causal effects of statin usage on T2D risk in observational data, (ii) uncovering which patient subgroup is most vulnerable for developing T2D after taking statins, and (iii) assessing the replicability and statistical significance of the most vulnerable subgroup via a bootstrap calibration procedure. Our proposed approach delivers asymptotically sharp confidence intervals and debiased estimate for the treatment effect of the most vulnerable subgroup in the presence of high-dimensional covariates. With our proposed approach, we find that females with high T2D genetic risk are at the highest risk of developing T2D due to statin usage. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2157727 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:543:p:1488-1499
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2157727
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().