Community Detection in General Hypergraph Via Graph Embedding
Yaoming Zhen and
Junhui Wang
Journal of the American Statistical Association, 2023, vol. 118, issue 543, 1620-1629
Abstract:
Conventional network data have largely focused on pairwise interactions between two entities, yet multi-way interactions among multiple entities have been frequently observed in real-life hypergraph networks. In this article, we propose a novel method for detecting community structure in general hypergraph networks, uniform or non-uniform. The proposed method introduces a null vertex to augment a nonuniform hypergraph into a uniform multi-hypergraph, and then embeds the multi-hypergraph in a low-dimensional vector space such that vertices within the same community are close to each other. The resultant optimization task can be efficiently tackled by an alternative updating scheme. The asymptotic consistencies of the proposed method are established in terms of both community detection and hypergraph estimation, which are also supported by numerical experiments on some synthetic and real-life hypergraph networks. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.2002157 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:543:p:1620-1629
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.2002157
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().