Online Estimation for Functional Data
Ying Yang Fang Yao
Journal of the American Statistical Association, 2023, vol. 118, issue 543, 1630-1644
Abstract:
Functional data analysis has attracted considerable interest and is facing new challenges, one of which is the increasingly available data in a streaming manner. In this article we develop an online nonparametric method to dynamically update the estimates of mean and covariance functions for functional data. The kernel-type estimates can be decomposed into two sufficient statistics depending on the data-driven bandwidths. We propose to approximate the future optimal bandwidths by a sequence of dynamically changing candidates and combine the corresponding statistics across blocks to form the updated estimation. The proposed online method is easy to compute based on the stored sufficient statistics and the current data block. We derive the asymptotic normality and, more importantly, the relative efficiency lower bounds of the online estimates of mean and covariance functions. This provides insight into the relationship between estimation accuracy and computational cost driven by the length of candidate bandwidth sequence. Simulations and real data examples are provided to support such findings. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.2002158 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:543:p:1630-1644
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.2002158
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().