Classification Trees for Imbalanced Data: Surface-to-Volume Regularization
Yichen Zhu,
Cheng Li and
David B. Dunson
Journal of the American Statistical Association, 2023, vol. 118, issue 543, 1707-1717
Abstract:
Classification algorithms face difficulties when one or more classes have limited training data. We are particularly interested in classification trees, due to their interpretability and flexibility. When data are limited in one or more of the classes, the estimated decision boundaries are often irregularly shaped due to the limited sample size, leading to poor generalization error. We propose a novel approach that penalizes the Surface-to-Volume Ratio (SVR) of the decision set, obtaining a new class of SVR-Tree algorithms. We develop a simple and computationally efficient implementation while proving estimation consistency for SVR-Tree and rate of convergence for an idealized empirical risk minimizer of SVR-Tree. SVR-Tree is compared with multiple algorithms that are designed to deal with imbalance through real data applications. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.2005609 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:543:p:1707-1717
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.2005609
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().