Fairness-Oriented Learning for Optimal Individualized Treatment Rules
Ethan X. Fang,
Zhaoran Wang and
Lan Wang
Journal of the American Statistical Association, 2023, vol. 118, issue 543, 1733-1746
Abstract:
There has recently been a surge on the methodological development for optimal individualized treatment rule (ITR) estimation. The standard methods in the literature are designed to maximize the potential average performance (assuming larger outcomes are desirable). A notable drawback of the standard approach, due to heterogeneity in treatment response, is that the estimated optimal ITR may be suboptimal or even detrimental to certain disadvantaged subpopulations. Motivated by the importance of incorporating an appropriate fairness constraint in optimal decision making (e.g., assign treatment with protection to those with shorter survival time, or assign a job training program with protection to those with lower wages), we propose a new framework that aims to estimate an optimal ITR to maximize the average value with the guarantee that its tail performance exceeds a prespecified threshold. The optimal fairness-oriented ITR corresponds to a solution of a nonconvex optimization problem. To handle the computational challenge, we develop a new efficient first-order algorithm. We establish theoretical guarantees for the proposed estimator. Furthermore, we extend the proposed method to dynamic optimal ITRs. The advantages of the proposed approach over existing methods are demonstrated via extensive numerical studies and real data analysis.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.2008402 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:543:p:1733-1746
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.2008402
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().