Tukey’s Depth for Object Data
Xiongtao Dai and
Sara Lopez-Pintado
Journal of the American Statistical Association, 2023, vol. 118, issue 543, 1760-1772
Abstract:
We develop a novel exploratory tool for non-Euclidean object data based on data depth, extending celebrated Tukey’s depth for Euclidean data. The proposed metric halfspace depth, applicable to data objects in a general metric space, assigns to data points depth values that characterize the centrality of these points with respect to the distribution and provides an interpretable center-outward ranking. Desirable theoretical properties that generalize standard depth properties postulated for Euclidean data are established for the metric halfspace depth. The depth median, defined as the deepest point, is shown to have high robustness as a location descriptor both in theory and in simulation. We propose an efficient algorithm to approximate the metric halfspace depth and illustrate its ability to adapt to the intrinsic data geometry. The metric halfspace depth was applied to an Alzheimer’s disease study, revealing group differences in the brain connectivity, modeled as covariance matrices, for subjects in different stages of dementia. Based on phylogenetic trees of seven pathogenic parasites, our proposed metric halfspace depth was also used to construct a meaningful consensus estimate of the evolutionary history and to identify potential outlier trees. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.2011298 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:543:p:1760-1772
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.2011298
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().