Generalized Good-Turing Improves Missing Mass Estimation
Amichai Painsky
Journal of the American Statistical Association, 2023, vol. 118, issue 543, 1890-1899
Abstract:
Consider a finite sample from an unknown distribution over a countable alphabet. The missing mass refers to the probability of symbols that do not appear in the sample. Estimating the missing mass is a basic problem in statistics and related fields, which dates back to the early work of Laplace, and the more recent seminal contribution of Good and Turing. In this article, we introduce a generalized Good-Turing (GT) framework for missing mass estimation. We derive an upper-bound for the risk (in terms of mean squared error) and minimize it over the parameters of our framework. Our analysis distinguishes between two setups, depending on the (unknown) alphabet size. When the alphabet size is bounded from above, our risk-bound demonstrates a significant improvement compared to currently known results (which are typically oblivious to the alphabet size). Based on this bound, we introduce a numerically obtained estimator that improves upon GT. When the alphabet size holds no restrictions, we apply our suggested risk-bound and introduce a closed-form estimator that again improves GT performance guarantees. Our suggested framework is easy to apply and does not require additional modeling assumptions. This makes it a favorable choice for practical applications. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.2020658 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:543:p:1890-1899
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.2020658
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().