EconPapers    
Economics at your fingertips  
 

Estimation of Copulas via Maximum Mean Discrepancy

Pierre Alquier, Badr-Eddine Chérief-Abdellatif, Alexis Derumigny and Jean-David Fermanian

Journal of the American Statistical Association, 2023, vol. 118, issue 543, 1997-2012

Abstract: This article deals with robust inference for parametric copula models. Estimation using canonical maximum likelihood might be unstable, especially in the presence of outliers. We propose to use a procedure based on the maximum mean discrepancy (MMD) principle. We derive nonasymptotic oracle inequalities, consistency and asymptotic normality of this new estimator. In particular, the oracle inequality holds without any assumption on the copula family, and can be applied in the presence of outliers or under misspecification. Moreover, in our MMD framework, the statistical inference of copula models for which there exists no density with respect to the Lebesgue measure on [0,1]d, as the Marshall-Olkin copula, becomes feasible. A simulation study shows the robustness of our new procedures, especially compared to pseudo-maximum likelihood estimation. An R package implementing the MMD estimator for copula models is available. Supplementary materials for this article are available online.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.2024836 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:543:p:1997-2012

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2021.2024836

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-22
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:543:p:1997-2012