Beyond Matérn: On A Class of Interpretable Confluent Hypergeometric Covariance Functions
Pulong Ma and
Anindya Bhadra
Journal of the American Statistical Association, 2023, vol. 118, issue 543, 2045-2058
Abstract:
The Matérn covariance function is a popular choice for prediction in spatial statistics and uncertainty quantification literature. A key benefit of the Matérn class is that it is possible to get precise control over the degree of mean-square differentiability of the random process. However, the Matérn class possesses exponentially decaying tails, and thus, may not be suitable for modeling polynomially decaying dependence. This problem can be remedied using polynomial covariances; however, one loses control over the degree of mean-square differentiability of corresponding processes, in that random processes with existing polynomial covariances are either infinitely mean-square differentiable or nowhere mean-square differentiable at all. We construct a new family of covariance functions called the Confluent Hypergeometric (CH) class using a scale mixture representation of the Matérn class where one obtains the benefits of both Matérn and polynomial covariances. The resultant covariance contains two parameters: one controls the degree of mean-square differentiability near the origin and the other controls the tail heaviness, independently of each other. Using a spectral representation, we derive theoretical properties of this new covariance including equivalent measures and asymptotic behavior of the maximum likelihood estimators under infill asymptotics. The improved theoretical properties of the CH class are verified via extensive simulations. Application using NASA’s Orbiting Carbon Observatory-2 satellite data confirms the advantage of the CH class over the Matérn class, especially in extrapolative settings. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2027775 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:543:p:2045-2058
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2027775
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().