Semiparametric Goodness-of-Fit Test for Clustered Point Processes with a Shape-Constrained Pair Correlation Function
Ganggang Xu,
Chen Liang,
Rasmus Waagepetersen and
Yongtao Guan
Journal of the American Statistical Association, 2023, vol. 118, issue 543, 2072-2087
Abstract:
Specification of a parametric model for the intensity function is a fundamental task in statistics for spatial point processes. It is, therefore, crucial to be able to assess the appropriateness of a suggested model for a given point pattern dataset. For this purpose, we develop a new class of semiparametric goodness-of-fit tests for the specified parametric first-order intensity, without assuming a full data generating mechanism that is needed for the existing popular Monte Carlo tests. The proposed tests crucially rely on accurate nonparametric estimation of the second-order properties of a point process. To address this we propose a new nonparametric pair correlation function (PCF) estimator for clustered spatial point processes under some mild shape constraints, which is shown to achieve uniform consistency. The proposed test statistics are computationally efficient owing to closed-form asymptotic distributions and achieve the nominal size even for testing composite hypotheses. In practice, the proposed estimation and testing procedures provide effective tools to improve parametric intensity function modeling, which is demonstrated through extensive simulation studies as well as a real data analysis of street crime activity in Washington DC. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2029456 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:543:p:2072-2087
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2029456
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().