Mixed-Response State-Space Model for Analyzing Multi-Dimensional Digital Phenotypes
Tianchen Xu,
Yuan Chen,
Donglin Zeng and
Yuanjia Wang
Journal of the American Statistical Association, 2023, vol. 118, issue 544, 2288-2300
Abstract:
Digital technologies (e.g., mobile phones) can be used to obtain objective, frequent, and real-world digital phenotypes from individuals. However, modeling these data poses substantial challenges since observational data are subject to confounding and various sources of variabilities. For example, signals on patients’ underlying health status and treatment effects are mixed with variation due to the living environment and measurement noises. The digital phenotype data thus shows extensive variabilities between- and within-patient as well as across different health domains (e.g., motor, cognitive, and speaking). Motivated by a mobile health study of Parkinson’s disease (PD), we develop a mixed-response state-space (MRSS) model to jointly capture multi-dimensional, multi-modal digital phenotypes and their measurement processes by a finite number of latent state time series. These latent states reflect the dynamic health status and personalized time-varying treatment effects and can be used to adjust for informative measurements. For computation, we use the Kalman filter for Gaussian phenotypes and importance sampling with Laplace approximation for non-Gaussian phenotypes. We conduct comprehensive simulation studies and demonstrate the advantage of MRSS in modeling a mobile health study that remotely collects real-time digital phenotypes from PD patients. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2225742 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2288-2300
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2225742
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().