EconPapers    
Economics at your fingertips  
 

Sparse Reduced Rank Huber Regression in High Dimensions

Kean Ming Tan, Qiang Sun and Daniela Witten

Journal of the American Statistical Association, 2023, vol. 118, issue 544, 2383-2393

Abstract: We propose a sparse reduced rank Huber regression for analyzing large and complex high-dimensional data with heavy-tailed random noise. The proposed method is based on a convex relaxation of a rank- and sparsity-constrained nonconvex optimization problem, which is then solved using a block coordinate descent and an alternating direction method of multipliers algorithm. We establish nonasymptotic estimation error bounds under both Frobenius and nuclear norms in the high-dimensional setting. This is a major contribution over existing results in reduced rank regression, which mainly focus on rank selection and prediction consistency. Our theoretical results quantify the tradeoff between heavy-tailedness of the random noise and statistical bias. For random noise with bounded (1+δ)th moment with δ∈(0,1), the rate of convergence is a function of δ, and is slower than the sub-Gaussian-type deviation bounds; for random noise with bounded second moment, we obtain a rate of convergence as if sub-Gaussian noise were assumed. We illustrate the performance of the proposed method via extensive numerical studies and a data application. Supplementary materials for this article are available online.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2050243 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2383-2393

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2050243

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2383-2393