EconPapers    
Economics at your fingertips  
 

Robust Estimation of Large Panels with Factor Structures

Marco Avarucci and Paolo Zaffaroni

Journal of the American Statistical Association, 2023, vol. 118, issue 544, 2394-2405

Abstract: This article studies estimation of linear panel regression models with heterogeneous coefficients using a class of weighted least squares estimators, when both the regressors and the error possibly contain a common latent factor structure. Our theory is robust to the specification of such a factor structure because it does not require any information on the number of factors or estimation of the factor structure itself. Moreover, our theory is efficient, in certain circumstances, because it nests the GLS principle. We first show how our unfeasible weighted-estimator provides a bias-adjusted estimator with the conventional limiting distribution, for situations in which the OLS is affected by a first-order bias. The technical challenge resolved in the article consists of showing how these properties are preserved for the feasible weighted estimator in a double-asymptotics setting. Our theory is illustrated by extensive Monte Carlo experiments and an empirical application that investigates the link between capital accumulation and economic growth in an international setting. Supplementary materials for this article are available online.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2050244 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2394-2405

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2050244

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2394-2405