Survival Analysis via Ordinary Differential Equations
Weijing Tang,
Kevin He,
Gongjun Xu and
Ji Zhu
Journal of the American Statistical Association, 2023, vol. 118, issue 544, 2406-2421
Abstract:
This article introduces an Ordinary Differential Equation (ODE) notion for survival analysis. The ODE notion not only provides a unified modeling framework, but more importantly, also enables the development of a widely applicable, scalable, and easy-to-implement procedure for estimation and inference. Specifically, the ODE modeling framework unifies many existing survival models, such as the proportional hazards model, the linear transformation model, the accelerated failure time model, and the time-varying coefficient model as special cases. The generality of the proposed framework serves as the foundation of a widely applicable estimation procedure. As an illustrative example, we develop a sieve maximum likelihood estimator for a general semiparametric class of ODE models. In comparison to existing estimation methods, the proposed procedure has advantages in terms of computational scalability and numerical stability. Moreover, to address unique theoretical challenges induced by the ODE notion, we establish a new general sieve M-theorem for bundled parameters and show that the proposed sieve estimator is consistent and asymptotically normal, and achieves the semiparametric efficiency bound. The finite sample performance of the proposed estimator is examined in simulation studies and a real-world data example. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2051519 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2406-2421
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2051519
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().