A General Pairwise Comparison Model for Extremely Sparse Networks
Ruijian Han,
Yiming Xu and
Kani Chen
Journal of the American Statistical Association, 2023, vol. 118, issue 544, 2422-2432
Abstract:
Statistical estimation using pairwise comparison data is an effective approach to analyzing large-scale sparse networks. In this article, we propose a general framework to model the mutual interactions in a network, which enjoys ample flexibility in terms of model parameterization. Under this setup, we show that the maximum likelihood estimator for the latent score vector of the subjects is uniformly consistent under a near-minimal condition on network sparsity. This condition is sharp in terms of the leading order asymptotics describing the sparsity. Our analysis uses a novel chaining technique and illustrates an important connection between graph topology and model consistency. Our results guarantee that the maximum likelihood estimator is justified for estimation in large-scale pairwise comparison networks where data are asymptotically deficient. Simulation studies are provided in support of our theoretical findings. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2053137 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2422-2432
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2053137
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().