Sharp Nonparametric Bounds for Decomposition Effects with Two Binary Mediators
Erin E. Gabriel,
Michael C. Sachs and
Arvid Sjölander
Journal of the American Statistical Association, 2023, vol. 118, issue 544, 2446-2453
Abstract:
In randomized trials, once the total effect of the intervention has been estimated, it is often of interest to explore mechanistic effects through mediators along the causal pathway between the randomized treatment and the outcome. In the setting with two sequential mediators, there are a variety of decompositions of the total risk difference into mediation effects. We derive sharp and valid bounds for a number of mediation effects in the setting of two sequential mediators both with unmeasured confounding with the outcome. We provide five such bounds in the main text corresponding to two different decompositions of the total effect, as well as the controlled direct effect, with an additional 30 novel bounds provided in the supplementary materials corresponding to the terms of 24 four-way decompositions. We also show that, although it may seem that one can produce sharp bounds by adding or subtracting the limits of the sharp bounds for terms in a decomposition, this almost always produces valid, but not sharp bounds that can even be completely noninformative. We investigate the properties of the bounds by simulating random probability distributions under our causal model and illustrate how they are interpreted in a real data example. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2057316 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2446-2453
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2057316
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().