EconPapers    
Economics at your fingertips  
 

Metropolis–Hastings via Classification

Tetsuya Kaji and Veronika Ročková

Journal of the American Statistical Association, 2023, vol. 118, issue 544, 2533-2547

Abstract: This article develops a Bayesian computational platform at the interface between posterior sampling and optimization in models whose marginal likelihoods are difficult to evaluate. Inspired by contrastive learning and Generative Adversarial Networks (GAN), we reframe the likelihood function estimation problem as a classification problem. Pitting a Generator, who simulates fake data, against a Classifier, who tries to distinguish them from the real data, one obtains likelihood (ratio) estimators which can be plugged into the Metropolis–Hastings algorithm. The resulting Markov chains generate, at a steady state, samples from an approximate posterior whose asymptotic properties we characterize. Drawing upon connections with empirical Bayes and Bayesian misspecification, we quantify the convergence rate in terms of the contraction speed of the actual posterior and the convergence rate of the Classifier. Asymptotic normality results are also provided which justify the inferential potential of our approach. We illustrate the usefulness of our approach on examples which have challenged for existing Bayesian likelihood-free approaches. Supplementary materials for this article are available online.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2060836 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2533-2547

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2060836

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2533-2547