The Maximum of the Periodogram of a Sequence of Functional Data
Clément Cerovecki,
Vaidotas Characiejus and
Siegfried Hörmann
Journal of the American Statistical Association, 2023, vol. 118, issue 544, 2712-2720
Abstract:
We study the periodogram operator of a sequence of functional data. Using recent advances in Gaussian approximation theory, we derive the asymptotic distribution of the maximum norm over all fundamental frequencies. We consider the case where the noise variables are independent and then generalize our results to functional linear processes. Our theory can be used for detecting periodic signals in functional time series when the length of the period is unknown. We demonstrate the proposed methodology in a simulation study as well as on real data. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2071720 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2712-2720
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2071720
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().