EconPapers    
Economics at your fingertips  
 

The Maximum of the Periodogram of a Sequence of Functional Data

Clément Cerovecki, Vaidotas Characiejus and Siegfried Hörmann

Journal of the American Statistical Association, 2023, vol. 118, issue 544, 2712-2720

Abstract: We study the periodogram operator of a sequence of functional data. Using recent advances in Gaussian approximation theory, we derive the asymptotic distribution of the maximum norm over all fundamental frequencies. We consider the case where the noise variables are independent and then generalize our results to functional linear processes. Our theory can be used for detecting periodic signals in functional time series when the length of the period is unknown. We demonstrate the proposed methodology in a simulation study as well as on real data. Supplementary materials for this article are available online.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2071720 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2712-2720

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2071720

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2712-2720