Spatio-Temporal Cross-Covariance Functions under the Lagrangian Framework with Multiple Advections
Mary Lai O. Salvaña,
Amanda Lenzi and
Marc G. Genton
Journal of the American Statistical Association, 2023, vol. 118, issue 544, 2746-2761
Abstract:
When analyzing the spatio-temporal dependence in most environmental and earth sciences variables such as pollutant concentrations at different levels of the atmosphere, a special property is observed: the covariances and cross-covariances are stronger in certain directions. This property is attributed to the presence of natural forces, such as wind, which cause the transport and dispersion of these variables. This spatio-temporal dynamics prompted the use of the Lagrangian reference frame alongside any Gaussian spatio-temporal geostatistical model. Under this modeling framework, a whole new class was birthed and was known as the class of spatio-temporal covariance functions under the Lagrangian framework, with several developments already established in the univariate setting, in both stationary and nonstationary formulations, but less so in the multivariate case. Despite the many advances in this modeling approach, efforts have yet to be directed to probing the case for the use of multiple advections, especially when several variables are involved. Accounting for multiple advections would make the Lagrangian framework a more viable approach in modeling realistic multivariate transport scenarios. In this work, we establish a class of Lagrangian spatio-temporal cross-covariance functions with multiple advections, study its properties, and demonstrate its use on a bivariate pollutant dataset of particulate matter in Saudi Arabia. Supplementary materials for this article are available online.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2078330 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2746-2761
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2078330
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().