EconPapers    
Economics at your fingertips  
 

Benign Overfitting and Noisy Features

Zhu Li, Weijie J. Su and Dino Sejdinovic

Journal of the American Statistical Association, 2023, vol. 118, issue 544, 2876-2888

Abstract: Modern machine learning models often exhibit the benign overfitting phenomenon, which has recently been characterized using the double descent curves. In addition to the classical U-shaped learning curve, the learning risk undergoes another descent as we increase the number of parameters beyond a certain threshold. In this article, we examine the conditions under which benign overfitting occurs in the random feature (RF) models, that is, in a two-layer neural network with fixed first layer weights. Adopting a novel view of random features, we show that benign overfitting emerges because of the noise residing in such features. The noise may already exist in the data and propagates to the features, or it may be added by the user to the features directly. Such noise plays an implicit yet crucial regularization role in the phenomenon. In addition, we derive the explicit tradeoff between the number of parameters and the prediction accuracy, and for the first time demonstrate that overparameterized model can achieve the optimal learning rate in the minimax sense. Finally, our results indicate that the learning risk for overparameterized models has multiple, instead of double descent behavior, which is empirically verified in recent works. Supplementary materials for this article are available online.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2093206 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2876-2888

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2093206

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:118:y:2023:i:544:p:2876-2888