Bayesian Markov-Switching Tensor Regression for Time-Varying Networks
Monica Billio,
Roberto Casarin and
Matteo Iacopini
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 109-121
Abstract:
Modeling time series of multilayer network data is challenging due to the peculiar characteristics of real-world networks, such as sparsity and abrupt structural changes. Moreover, the impact of external factors on the network edges is highly heterogeneous due to edge- and time-specific effects. Capturing all these features results in a very high-dimensional inference problem. A novel tensor-on-tensor regression model is proposed, which integrates zero-inflated logistic regression to deal with the sparsity, and Markov-switching coefficients to account for structural changes. A tensor representation and decomposition of the regression coefficients are used to tackle the high-dimensionality and account for the heterogeneous impact of the covariate tensor across the response variables. The inference is performed following a Bayesian approach, and an efficient Gibbs sampler is developed for posterior approximation. Our methodology applied to financial and email networks detects different connectivity regimes and uncovers the role of covariates in the edge-formation process, which are relevant in risk and resource management. Code is available on GitHub. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2102502 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Bayesian Markov Switching Tensor Regression for Time-varying Networks (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:109-121
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2102502
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().