Heavy-Tailed Density Estimation
Surya T. Tokdar,
Sheng Jiang and
Erika L. Cunningham
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 163-175
Abstract:
A novel statistical method is proposed and investigated for estimating a heavy tailed density under mild smoothness assumptions. Statistical analyses of heavy-tailed distributions are susceptible to the problem of sparse information in the tail of the distribution getting washed away by unrelated features of a hefty bulk. The proposed Bayesian method avoids this problem by incorporating smoothness and tail regularization through a carefully specified semiparametric prior distribution, and is able to consistently estimate both the density function and its tail index at near minimax optimal rates of contraction. A joint, likelihood driven estimation of the bulk and the tail is shown to help improve uncertainty assessment in estimating the tail index parameter and offer more accurate and reliable estimates of the high tail quantiles compared to thresholding methods. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2104727 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:163-175
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2104727
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().