EconPapers    
Economics at your fingertips  
 

Nearly Dimension-Independent Sparse Linear Bandit over Small Action Spaces via Best Subset Selection

Yi Chen, Yining Wang, Ethan X. Fang, Zhaoran Wang and Runze Li

Journal of the American Statistical Association, 2024, vol. 119, issue 545, 246-258

Abstract: We consider the stochastic contextual bandit problem under the high dimensional linear model. We focus on the case where the action space is finite and random, with each action associated with a randomly generated contextual covariate. This setting finds essential applications such as personalized recommendations, online advertisements, and personalized medicine. However, it is very challenging to balance the exploration and exploitation tradeoff. We modify the LinUCB algorithm in doubly growing epochs and estimate the parameter using the best subset selection method, which is easy to implement in practice. This approach achieves O(sT) regret with high probability, which is nearly independent of the “ambient” regression model dimension d. We further attain a sharper O(sT) regret by using the SupLinUCB framework and match the minimax lower bound of the low-dimensional linear stochastic bandit problem. Finally, we conduct extensive numerical experiments to empirically demonstrate our algorithms’ applicability and robustness. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2108816 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:246-258

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2108816

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:545:p:246-258