Selective Inference for Hierarchical Clustering
Lucy L. Gao,
Jacob Bien and
Daniela Witten
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 332-342
Abstract:
Classical tests for a difference in means control the Type I error rate when the groups are defined a priori. However, when the groups are instead defined via clustering, then applying a classical test yields an extremely inflated Type I error rate. Notably, this problem persists even if two separate and independent datasets are used to define the groups and to test for a difference in their means. To address this problem, in this article, we propose a selective inference approach to test for a difference in means between two clusters. Our procedure controls the selective Type I error rate by accounting for the fact that the choice of null hypothesis was made based on the data. We describe how to efficiently compute exact p-values for clusters obtained using agglomerative hierarchical clustering with many commonly used linkages. We apply our method to simulated data and to single-cell RNA-sequencing data. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2116331 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:332-342
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2116331
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().