Bootstrapping Extreme Value Estimators
Laurens de Haan and
Chen Zhou
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 382-393
Abstract:
This article develops a bootstrap analogue of the well-known asymptotic expansion of the tail quantile process in extreme value theory. One application of this result is to construct confidence intervals for estimators of the extreme value index such as the Probability Weighted Moment (PWM) estimator. For the peaks-over-threshold method, we show the bootstrap consistency of the confidence intervals. By contrast, the asymptotic expansion of the quantile process of the bootstrapped block maxima does not lead to a similar consistency result for the PWM estimator using the block maxima method. For both methods, We show by simulations that the sample variance of bootstrapped estimates can be a good approximation for the asymptotic variance of the original estimator. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2120400 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:382-393
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2120400
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().