Hierarchical Neyman-Pearson Classification for Prioritizing Severe Disease Categories in COVID-19 Patient Data
Lijia Wang,
Y. X. Rachel Wang,
Jingyi Jessica Li and
Xin Tong
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 39-51
Abstract:
COVID-19 has a spectrum of disease severity, ranging from asymptomatic to requiring hospitalization. Understanding the mechanisms driving disease severity is crucial for developing effective treatments and reducing mortality rates. One way to gain such understanding is using a multi-class classification framework, in which patients’ biological features are used to predict patients’ severity classes. In this severity classification problem, it is beneficial to prioritize the identification of more severe classes and control the “under-classification” errors, in which patients are misclassified into less severe categories. The Neyman-Pearson (NP) classification paradigm has been developed to prioritize the designated type of error. However, current NP procedures are either for binary classification or do not provide high probability controls on the prioritized errors in multi-class classification. Here, we propose a hierarchical NP (H-NP) framework and an umbrella algorithm that generally adapts to popular classification methods and controls the under-classification errors with high probability. On an integrated collection of single-cell RNA-seq (scRNA-seq) datasets for 864 patients, we explore ways of featurization and demonstrate the efficacy of the H-NP algorithm in controlling the under-classification errors regardless of featurization. Beyond COVID-19 severity classification, the H-NP algorithm generally applies to multi-class classification problems, where classes have a priority order. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2270657 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:39-51
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2270657
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().