EconPapers    
Economics at your fingertips  
 

Modeling and Active Learning for Experiments with Quantitative-Sequence Factors

Qian Xiao, Yaping Wang, Abhyuday Mandal and Xinwei Deng

Journal of the American Statistical Association, 2024, vol. 119, issue 545, 407-421

Abstract: A new type of experiment that aims to determine the optimal quantities of a sequence of factors is eliciting considerable attention in medical science, bioengineering, and many other disciplines. Such studies require the simultaneous optimization of both quantities and sequence orders of several components which are called quantitative-sequence (QS) factors. Given the large and semi-discrete solution spaces in such experiments, efficiently identifying optimal or near-optimal solutions by using a small number of experimental trials is a nontrivial task. To address this challenge, we propose a novel active learning approach, called QS-learning, to enable effective modeling and efficient optimization for experiments with QS factors. QS-learning consists of three parts: a novel mapping-based additive Gaussian process (MaGP) model, an efficient global optimization scheme (QS-EGO), and a new class of optimal designs (QS-design). The theoretical properties of the proposed method are investigated, and optimization techniques using analytical gradients are developed. The performance of the proposed method is demonstrated via a real drug experiment on lymphoma treatment and several simulation studies. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2123335 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:407-421

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2123335

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:545:p:407-421