Bayesian Spatial Blind Source Separation via the Thresholded Gaussian Process
Ben Wu,
Ying Guo and
Jian Kang
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 422-433
Abstract:
Blind source separation (BSS) aims to separate latent source signals from their mixtures. For spatially dependent signals in high-dimensional and large-scale data, such as neuroimaging, most existing BSS methods do not take into account the spatial dependence and the sparsity of the latent source signals. To address these major limitations, we propose a Bayesian spatial blind source separation (BSP-BSS) approach for neuroimaging data analysis. We assume the expectation of the observed images as a linear mixture of multiple sparse and piece-wise smooth latent source signals, for which we construct a new class of Bayesian nonparametric prior models by thresholding Gaussian processes. We assign the vMF priors to mixing coefficients in the model. Under some regularity conditions, we show that the proposed method has several desirable theoretical properties including the large support for the priors, the consistency of joint posterior distribution of the latent source intensity functions and the mixing coefficients, and the selection consistency on the number of latent sources. We use extensive simulation studies and an analysis of the resting-state fMRI data in the Autism Brain Imaging Data Exchange (ABIDE) study to demonstrate that BSP-BSS outperforms the existing method for separating latent brain networks and detecting activated brain activation in the latent sources. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2123336 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:422-433
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2123336
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().