Using SVD for Topic Modeling
Zheng Tracy Ke and
Minzhe Wang
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 434-449
Abstract:
The probabilistic topic model imposes a low-rank structure on the expectation of the corpus matrix. Therefore, singular value decomposition (SVD) is a natural tool of dimension reduction. We propose an SVD-based method for estimating a topic model. Our method constructs an estimate of the topic matrix from only a few leading singular vectors of the data matrix, and has a great advantage in memory use and computational cost for large-scale corpora. The core ideas behind our method include a pre-SVD normalization to tackle severe word frequency heterogeneity, a post-SVD normalization to create a low-dimensional word embedding that manifests a simplex geometry, and a post-SVD procedure to construct an estimate of the topic matrix directly from the embedded word cloud. We provide the explicit rate of convergence of our method. We show that our method attains the optimal rate in the case of long and moderately long documents, and it improves the rates of existing methods in the case of short documents. The key of our analysis is a sharp row-wise large-deviation bound for empirical singular vectors, which is technically demanding to derive and potentially useful for other problems. We apply our method to a corpus of Associated Press news articles and a corpus of abstracts of statistical papers. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2123813 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:434-449
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2123813
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().