Assumption-Lean Cox Regression
Stijn Vansteelandt,
Oliver Dukes,
Kelly Van Lancker and
Torben Martinussen
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 475-484
Abstract:
Inference for the conditional association between an exposure and a time-to-event endpoint, given covariates, is routinely based on partial likelihood estimators for hazard ratios indexing Cox proportional hazards models. This approach is flexible and makes testing straightforward, but is nonetheless not entirely satisfactory. First, there is no good understanding of what it infers when the model is misspecified. Second, it is common to employ variable selection procedures when deciding which model to use. However, the bias and uncertainty that imperfect variable selection adds to the analysis is rarely acknowledged, rendering standard inferences biased and overly optimistic. To remedy this, we propose a nonparametric estimand which reduces to the main exposure effect parameter in a (partially linear) Cox model when that model is correct, but continues to capture the (conditional) association of interest in a well understood way, even when this model is misspecified in an arbitrary manner. We achieve an assumption-lean inference for this estimand based on its influence function under the nonparametric model. This has the further advantage that it makes the proposed approach amenable to the use of data-adaptive procedures (e.g., variable selection, machine learning), which we find to work well in simulation studies and a data analysis. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2126362 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:475-484
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2126362
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().