EconPapers    
Economics at your fingertips  
 

Learning Coefficient Heterogeneity over Networks: A Distributed Spanning-Tree-Based Fused-Lasso Regression

Xin Zhang, Jia Liu and Zhengyuan Zhu

Journal of the American Statistical Association, 2024, vol. 119, issue 545, 485-497

Abstract: Identifying the latent cluster structure based on model heterogeneity is a fundamental but challenging task arises in many machine learning applications. In this article, we study the clustered coefficient regression problem in the distributed network systems, where the data are locally collected and held by nodes. Our work aims to improve the regression estimation efficiency by aggregating the neighbors’ information while also identifying the cluster membership for nodes. To achieve efficient estimation and clustering, we develop a distributed spanning-tree-based fused-lasso regression (DTFLR) approach. In particular, we propose an adaptive spanning-tree-based fusion penalty for the low-complexity clustered coefficient regression. We show that our proposed estimator satisfies statistical oracle properties. Additionally, to solve the problem parallelly, we design a distributed generalized alternating direction method of multiplier algorithm, which has a simple node-based implementation scheme and enjoys a linear convergence rate. Collectively, our results in this article contribute to the theories of low-complexity clustered coefficient regression and distributed optimization over networks. Thorough numerical experiments and real-world data analysis are conducted to verify our theoretical results, which show that our approach outperforms existing works in terms of estimation accuracy, computation speed, and communication costs. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2126363 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:485-497

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2126363

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:545:p:485-497