Distribution of Distances based Object Matching: Asymptotic Inference
Christoph Alexander Weitkamp,
Katharina Proksch,
Carla Tameling and
Axel Munk
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 538-551
Abstract:
In this article, we aim to provide a statistical theory for object matching based on a lower bound of the Gromov-Wasserstein distance related to the distribution of (pairwise) distances of the considered objects. To this end, we model general objects as metric measure spaces. Based on this, we propose a simple and efficiently computable asymptotic statistical test for pose invariant object discrimination. This is based on a (β-trimmed) empirical version of the afore-mentioned lower bound. We derive the distributional limits of this test statistic for the trimmed and untrimmed case. For this purpose, we introduce a novel U-type process indexed in β and show its weak convergence. The theory developed is investigated in Monte Carlo simulations and applied to structural protein comparisons. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2127360 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:538-551
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2127360
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().