EconPapers    
Economics at your fingertips  
 

A Mass-Shifting Phenomenon of Truncated Multivariate Normal Priors

Shuang Zhou, Pallavi Ray, Debdeep Pati and Anirban Bhattacharya

Journal of the American Statistical Association, 2024, vol. 119, issue 545, 582-596

Abstract: We show that lower-dimensional marginal densities of dependent zero-mean normal distributions truncated to the positive orthant exhibit a mass-shifting phenomenon. Despite the truncated multivariate normal density having a mode at the origin, the marginal density assigns increasingly small mass near the origin as the dimension increases. The phenomenon accentuates with stronger correlation between the random variables. This surprising behavior has serious implications toward Bayesian constrained estimation and inference, where the prior, in addition to having a full support, is required to assign a substantial probability near the origin to capture flat parts of the true function of interest. A precise quantification of the mass-shifting phenomenon for both the prior and the posterior, characterizing the role of the dimension as well as the dependence, is provided under a variety of correlation structures. Without further modification, we show that truncated normal priors are not suitable for modeling flat regions and propose a novel alternative strategy based on shrinking the coordinates using a multiplicative scale parameter. The proposed shrinkage prior is shown to achieve optimal posterior contraction around true functions with potentially flat regions. Synthetic and real data studies demonstrate how the modification guards against the mass shifting phenomenon while retaining computational efficiency. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2129059 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:582-596

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2129059

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:545:p:582-596