Estimating the Spectral Density at Frequencies Near Zero
Tucker McElroy and
Dimitris N. Politis
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 612-624
Abstract:
Estimating the spectral density function f(w) for some w∈[−π,π] has been traditionally performed by kernel smoothing the periodogram and related techniques. Kernel smoothing is tantamount to local averaging, that is, approximating f(w) by a constant over a window of small width. Although f(w) is uniformly continuous and periodic with period 2π, in this article we recognize the fact that w = 0 effectively acts as a boundary point in the underlying kernel smoothing problem, and the same is true for w=±π. It is well-known that local averaging may be suboptimal in kernel regression at (or near) a boundary point. As an alternative, we propose a local polynomial regression of the periodogram or log-periodogram when w is at (or near) the points 0 or ±π. The case w = 0 is of particular importance since f(0) is the large-sample variance of the sample mean; hence, estimating f(0) is crucial in order to conduct any sort of inference on the mean. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2133719 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:612-624
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2133719
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().