Robust Inference and Modeling of Mean and Dispersion for Generalized Linear Models
Jolien Ponnet,
Pieter Segaert,
Stefan Van Aelst and
Tim Verdonck
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 678-689
Abstract:
Generalized Linear Models (GLMs) are a popular class of regression models when the responses follow a distribution in the exponential family. In real data the variability often deviates from the relation imposed by the exponential family distribution, which results in over- or underdispersion. Dispersion effects may even vary in the data. Such datasets do not follow the traditional GLM distributional assumptions, leading to unreliable inference. Therefore, the family of double exponential distributions has been proposed, which models both the mean and the dispersion as a function of covariates in the GLM framework. Since standard maximum likelihood inference is highly susceptible to the possible presence of outliers, we propose the robust double exponential (RDE) estimator. Asymptotic properties and robustness of the RDE estimator are discussed. A generalized robust quasi-deviance measure is introduced which constitutes the basis for a stable robust test. Simulations for binomial and Poisson models show the excellent performance of the RDE estimator and corresponding robust tests. Penalized versions of the RDE estimator are developed for sparse estimation with high-dimensional data and for flexible estimation via generalized additive models (GAMs). Real data applications illustrate the relevance of robust inference for dispersion effects in GLMs and GAMs. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2140054 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:678-689
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2140054
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().