EconPapers    
Economics at your fingertips  
 

Robust High-Dimensional Regression with Coefficient Thresholding and Its Application to Imaging Data Analysis

Bingyuan Liu, Qi Zhang, Lingzhou Xue, Peter X.-K. Song and Jian Kang

Journal of the American Statistical Association, 2024, vol. 119, issue 545, 715-729

Abstract: It is important to develop statistical techniques to analyze high-dimensional data in the presence of both complex dependence and possible heavy tails and outliers in real-world applications such as imaging data analyses. We propose a new robust high-dimensional regression with coefficient thresholding, in which an efficient nonconvex estimation procedure is proposed through a thresholding function and the robust Huber loss. The proposed regularization method accounts for complex dependence structures in predictors and is robust against heavy tails and outliers in outcomes. Theoretically, we rigorously analyze the landscape of the population and empirical risk functions for the proposed method. The fine landscape enables us to establish both statistical consistency and computational convergence under the high-dimensional setting. We also present an extension to incorporate spatial information into the proposed method. Finite-sample properties of the proposed methods are examined by extensive simulation studies. An application concerns a scalar-on-image regression analysis for an association of psychiatric disorder measured by the general factor of psychopathology with features extracted from the task functional MRI data in the Adolescent Brain Cognitive Development (ABCD) study. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2142590 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:715-729

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2142590

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:545:p:715-729