Fair Policy Targeting
Davide Viviano and
Jelena Bradic
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 730-743
Abstract:
One of the major concerns of targeting interventions on individuals in social welfare programs is discrimination: individualized treatments may induce disparities across sensitive attributes such as age, gender, or race. This article addresses the question of the design of fair and efficient treatment allocation rules. We adopt the nonmaleficence perspective of “first do no harm”: we select the fairest allocation within the Pareto frontier. We cast the optimization into a mixed-integer linear program formulation, which can be solved using off-the-shelf algorithms. We derive regret bounds on the unfairness of the estimated policy function and small sample guarantees on the Pareto frontier under general notions of fairness. Finally, we illustrate our method using an application from education economics. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2142591 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:730-743
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2142591
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().