Matching on Generalized Propensity Scores with Continuous Exposures
Xiao Wu,
Fabrizia Mealli,
Marianthi-Anna Kioumourtzoglou,
Francesca Dominici and
Danielle Braun
Journal of the American Statistical Association, 2024, vol. 119, issue 545, 757-772
Abstract:
In the context of a binary treatment, matching is a well-established approach in causal inference. However, in the context of a continuous treatment or exposure, matching is still underdeveloped. We propose an innovative matching approach to estimate an average causal exposure-response function under the setting of continuous exposures that relies on the generalized propensity score (GPS). Our approach maintains the following attractive features of matching: (a) clear separation between the design and the analysis; (b) robustness to model misspecification or to the presence of extreme values of the estimated GPS; (c) straightforward assessments of covariate balance. We first introduce an assumption of identifiability, called local weak unconfoundedness. Under this assumption and mild smoothness conditions, we provide theoretical guarantees that our proposed matching estimator attains point-wise consistency and asymptotic normality. In simulations, our proposed matching approach outperforms existing methods under settings with model misspecification or in the presence of extreme values of the estimated GPS. We apply our proposed method to estimate the average causal exposure-response function between long-term PM 2.5 exposure and all-cause mortality among 68.5 million Medicare enrollees, 2000–2016. We found strong evidence of a harmful effect of long-term PM 2.5 exposure on mortality. Code for the proposed matching approach is provided in the CausalGPS R package, which is available on CRAN and provides a computationally efficient implementation. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2144737 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:545:p:757-772
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2144737
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().