EconPapers    
Economics at your fingertips  
 

Higher-Order Least Squares: Assessing Partial Goodness of Fit of Linear Causal Models

Christoph Schultheiss, Peter Bühlmann and Ming Yuan

Journal of the American Statistical Association, 2024, vol. 119, issue 546, 1019-1031

Abstract: We introduce a simple diagnostic test for assessing the overall or partial goodness of fit of a linear causal model with errors being independent of the covariates. In particular, we consider situations where hidden confounding is potentially present. We develop a method and discuss its capability to distinguish between covariates that are confounded with the response by latent variables and those that are not. Thus, we provide a test and methodology for partial goodness of fit. The test is based on comparing a novel higher-order least squares principle with ordinary least squares. In spite of its simplicity, the proposed method is extremely general and is also proven to be valid for high-dimensional settings. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2157728 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1019-1031

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2157728

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1019-1031